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AAS 07-223

EFFICIENT GRAVITY FIELD COMPUTATION FOR TRAJECTORY
PROPAGATION NEAR SMALL BODIES

Andrew Colombi∗, Anil N. Hirani†, Benjamin F. Villac‡

We present an approximation scheme for gravitational force near arbitrarily shaped
small bodies. The approximation uses polynomial interpolation with an adaptive
spatial data structure. This data structure allows us to drive errors in the model to
within user defined thresholds. The result is a method that is expected to reduce
the run time of trajectory integrations around small bodies without compromising
accuracy. Our method is likely to provide a substantial improvement in the speed of
Monte Carlo analysis of spacecraft motion in proximity to small bodies.

INTRODUCTION

Gravitational force computation is the bottleneck of Monte Carlo simulation used in design and
analysis of small body missions. This expense has lead researchers to investigate ways to reduce
cost.1 The current approach for this force evaluation, developed by Werner and Scheeres,2, 3 requires
a summation of contributions from every face and edge over a polyhedral model representing the
surface of the attracting body. While tractable over a single evaluation, this process becomes pro-
hibitive when one considers the fact that numerically integrated trajectories consist of hundreds of
elementary time steps, each of which rely on multiple force evaluations. Furthermore, Monte Carlo
simulations represent another summation over this already expensive process. While the improve-
ments proposed in Ref. 1 result in significantly faster running times, ultimately their complexity
remains the same O(F + E), where F is the number of faces and E is the number of edges in the
model of the attracting body.

We propose to alleviate this computational burden by pre-computing gravitation throughout the
domain, and reducing force computations to a fast, sub-linear (i.e. O(log N)), interpolation opera-
tion. Indeed, given the availability of cheap, fast memory storage, trading memory against on-line
computation seems advantageous. The idea of representing the gravitational potential using inter-
polation schemes has already been investigated by Junkins and Engels (Ref. 4 and 5) for the case
of nearly spherical bodies. The extension of such methods to the case of arbitrarily shaped bodies
presents several challenges: the irregularity of the domain and the taxing error bounds required for
trajectory integration. This paper presents a solution to these challenges.

In the next section we review two computational models relevant to the formulation of our
method. Then, the section ‘Approximating an Asteroid’s Gravitational Force’ presents our approach
to the computation of gravitational forces. The final two sections give a discussion of our results
and present some challenges that remain.
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PREVIOUS WORK

We start with a discussion of the polyhedral method developed by Werner and Scheeres,2, 3 which
we take to be the true gravitational force for the remainder of this paper. Then we discuss the method
proposed by Junkins4 as it provides a foundation for the present work.

Polyhedral Method

Polyhedral methods calculate gravity by performing an exact integration over a polyhedral ap-
proximation to the asteroid. By clever application of Green’s Theorem this method transforms a
three dimensional integral over the mass into a two dimensional integral over the surface. This
surface integral is then further manipulated to yield a summation over all faces and edges, where
each term requires calculating a transcendental function. The time complexity of this algorithm is
O(E + F ) where E and F are the number of edges and faces respectively. As a result, simulations
with this method, especially with a large model, can be very costly.

Efforts to reduce this burden have been researched,1 and experiments in Ref. 1 used three tech-
niques to reduce computational cost of the polyhedral method: (i) shape coarsening, (ii) calculation
caching, and (iii) Taylor approximations. They found that all three methods could have a significant
impact on the running time of a simulation. Specifically, in ideal circumstances a calculation could
be sped up 100 fold without compromising the model’s accuracy; more general orbits still benefited
from a 10 times speed up.1

Interpolation Based Method

Interpolation based methods, as developed in Ref. 4, 5, compute gravitational forces through
approximating polynomials fit to the forces present in a particular, small region. Such methods
proceed by first dividing the domain of interest into a regular grid. Then, empirical or simulated
(e.g. polyhedral methods) force measurements are made at each vertex. With this information
the force in a given grid cell can be reconstructed with polynomial interpolation. At this point
it is worth noting that to reconstruct force using this method one should not interpolate potential
and differentiate. While the differentiation of the potential may be appropriate, it leads to some
difficulties in the general case.6 In particular, a small error in the potential may not necessarily lead
to an equally small error in its derivatives.

As noted in the introduction, several challenges face the methods of Ref. 4, 5 when applied to
asteroid gravity; foremost, the shape of an asteroid does not accommodate a regular grid. Work-
ing around an irregular body with a regular grid requires a very fine division level to capture the
asteroid/space interface. This has an unnecessary and impractical memory cost as such a fine grid
is largely wasted far from the asteroid. Furthermore, the methods of Ref. 4, 5 cannot provide a
variable level of approximating power: the grid has the same resolution everywhere. On the other
hand, an asteroid’s gravitation will be more difficult to represent the closer we come to the body (see
the section “Remainder Formulas”). These incongruities make the methods of Ref. 4, 5 difficult to
apply in the case of irregular bodies.
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APPROXIMATING AN ASTEROID’S GRAVITATIONAL FORCE

The primary task of our software is to provide quick and accurate estimates of the accelerations
experienced by a spacecraft orbiting a small, irregular body like an asteroid or comet. To accom-
plish this we separate the problem into two tasks: dividing the domain into subdomains (which we
shall call cells), and approximating the force in a cell. As noted above, this approach is similar
to the interpolation method4, 5 with the additional challenges of close-proximity representation and
irregularity of the domain. Thus, we choose an adaptive solution; one able to conform to the shape
of an arbitrary asteroid and offer finer grained approximation in regions closer to the mass.

Subdividing the domain into manageable cells is accomplished with an adaptive “octree” data
structure. This data structure operates by splitting the domain into variable sized cuboids that each
contain a local model of gravity’s force. Once a local model is in place we can estimate its error
relative to the polyhedral method; if the error is too large the octree divides the cuboid and the
process is repeated, otherwise we let the cuboid stay. In building the octree data-structure, we
conservatively choose a relative error threshold of 10−6, which is an order of magnitude less than
the error in accelaration that is acceptable in mission design as advised by Ref. 1. We choose the
more conservative threshold during octree construction because error estimation during that stage is
based on random sampling, as explained in subsection “The error in a cell” below.

To approximate the gravitational force in a cell several methods are available. For this study
we have chosen variable order polynomial interpolation approximating each direction of the force
separately. In this scenario the actual gravity is computed using the polyhedral method at interpo-
lation points inside each leaf cuboid of the octree. Placement of the interpolation points follows
the Gauss-Lobatto-Legendre scheme, which is known for its low Lebesgue constant.7 Once the
force has been computed at all nodes an interpolating polynomial is constructed. We use Lagrange
polynomial basis for their superior conditioning and ease of computation.7, 8

Octrees

In this section we will give practical details regarding the octree data structure. Octrees are more
easily illustrated by their 2D analogue; hence, the following description is given for “quadtrees”.
Quadtrees are adaptive tree data structures for organizing localized data in a rectangular domain.
Two operations characterize the function of a quadtree: Subdivide, and Find. Subdivide
is a constant time operation that splits a rectangle into four quadrants by splitting each dimension
in half. A quadtree is built by beginning with a single rectangle and subdividing recursively until
the desired tree structure is created.9 Figure 1 shows a quadtree as a tree and as a collection of
rectangles.

Find recalls localized data associated with query points by recursively traversing the tree. At
each level Find picks the child quadrant containing our query; this is a constant time operation as
each cell has at most four children. After every level is traversed a leaf is reached, and the data it
contains is returned. As balanced trees have at most log N levels the run time complexity of Find is
O(log N), where N is the total number of cells.9 Thus, subdividing our model to improve accuracy
incurs only a sub-linear run time penalty. This compares favorably to the polyhedral method which
requires a linear cost increase to improve accuracy.

To illustrate the practical benefit of a sub-linear run time consider the following example. For the
sake of argument we shall examine moving from polyhedral models with 1,000 elements to 10,000
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Figure 1 Left: A quadtree viewed geometrically. Right: A quadtree viewed as a tree.
Labels show the mapping between geometric and tree views. The point represents a
query; the tree view shows the query being resolved.

elements, and compare that to moving from 10,000 octree cells to 100,000. Following this scenario
the polyhedral method would cost 10× more computation when moving to the new model, whereas
an octree method only costs 1.2× the former computation. Taking this out another factor of 10 we
find costs rising 100× and 1.4× respectively. In other words, methods with asymptotically better
performance have dramatically superior run times as problems scale up to take advantage of newest
computational power available.

It is worth mentioning that while quadtrees can be implemented in a straightforward manner,
there are several clever tricks that are worth implementing. For example, a typical implementation
associates a rectangle with each cell in the quadtree. Queries made to the quadtree recursively
traverse each level, and perform a containment test on every rectangle the next level down. This
implementation is functional, but substantial savings in time and memory can be made by taking
advantage of the quadtree’s special structure.9 Following these techniques reveal a natural way
to identify which leaf a query is in without traversing the tree. This is especially useful during
trajectory simulations as it enables us to quickly check if the spacecraft has shifted cells.

Octrees follow the same design, but use cuboids in 3D instead of rectangles.9

Gauss-Lobatto-Legendre Interpolation with Lagrange Polynomials

Approximation of univariate functions with interpolating polynomials is a well studied field,10

however, the theory of multivariate polynomial interpolation is still widely researched.11, 7 In this
section we will provide a brief discussion of topics relevant to our model. For a deeper discussion
see classic texts of the field such as Ref. 10.

Before continuing it will be helpful to define our notation. Let N ⊂ Rd be a set of points in Rd

that accommodate interpolation, and define LN as the operator that maps continuous functions to
their polynomial interpolant; in other words, LNf(xi) = f(xi) for xi ∈ N . Define Dvf,v ∈ Rd

as the directional derivative of f in the v direction, and Dn
vf as the directional derivative repeated

n times. We will also use fn to denote the nth derivative of f when f is univariate. Define pN
xi

to
be the Lagrange polynomial centered at xi ∈ N ; i.e. pN

xi
(xj) = δij for xi,xj ∈ N .11, 7 Lastly, we

use boldface to distinguish vector values from scalars.
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Remainder Formulas

Remainder formulas represent the error in approximating a given continuous function f with an
interpolating polynomial. The familiar remainder formula for univariate f ∈ C[a, b] is,

f(x)− LNf(x) =
(x− x0)(x− x1) · · · (x− xn)

(n + 1)!
f

n+1(ξ), (1)

where xi ∈ N are the interpolation points such that a ≤ x0 ≤ · · · ≤ xi ≤ · · · ≤ xn ≤ b and
ξ ∈ [a, b]. Unfortunately, this result does not easily generalize to the multivariate case, for which
there are several forms.

For our purposes we will discuss Ciarlet’s formula,12, 11

f(x)− LNf(x) =
�

xi∈N

p
N
xi

(x)
�

[xi,x,...,x]
D

|N |
xi−xf, (2)

where | · | denotes the cardinality of a set. (See Ref. 11 or 12 for an explanation of the
�
[xi,x,...,x]

notation, which is beyond the scope of this paper. Suffice it to say that this notation integrates
regions bounded by the subscripted points.) While such a bound is too costly to evaluate as a
quantitative measure, we can still draw qualitative conclusions from it.

Let f : R3 → R be the gravitational force in one direction. Taking derivatives of f always yields
equations with rn−1 in the denominator, where n is the number of times we have differentiated.
Hence, D

|N |
xi−xf takes on larger values the closer we are to the mass of the asteroid. By Eq. (2) we

conclude that approximation by polynomial interpolation has larger error the closer we come to the
asteroid.

Another lesson of Ciarlet’s formula lies in the integral. By reducing the extent of N we reduce
the region of the integral. This formalizes our intuition that octree subdivision reduces errors in a
cell.

Lebesgue Constants and Gauss-Lobatto-Legendre Points

The Lebesgue constant is a measure of how close LNf is to the best uniform approximation of
f .7 One technique to minimize the Lebesgue constant is to find Feteke points. Feteke points reduce
the Lebesgue constant by minimizing the associated Vandermonde matrix’s determinant. It has been
shown that Feteke points in one dimension are the Gauss-Lobatto-Legendre points, and this result
scales to two and three dimensions via the tensor product, see Figure 2. Gauss-Lobatto-Legendre
points for 1D, order n interpolation are the zeros of

�(x) := (x− 1)(x + 1)P �
n(x), (3)

where Pn(x) is the Legendre polynomial of order n. We shall refer to the zeros of Eq. (3) as N̂ .
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Figure 2 Left: One dimensional Gauss-Lobatto-Legendre nodes; we refer to these as
N̂ . Right: Two dimensional tensor product of N̂ .

Lagrange Polynomials as a Polynomial Basis for Approximation

In the context of polynomial interpolation at points N , the |N | Lagrange polynomials are defined
as,

p
N
xi

(xj) = δij for xi,xj ∈ N. (4)

In choosing Lagrange polynomials as our basis we are picking LNf to be of the form
�

xi∈N αip
N
xi

.
Thus, we seek αi such that

f(xi) =
�

xj∈N

αjp
N
xj

(xi). (5)

Substituting Eq. (4) into Eq. (5) yields

αi = f(xi). (6)

This straightforward construction of an interpolating polynomial is one of the chief advantages of a
Lagrange basis.

Having determined coefficients for a local force model we need the tools to evaluate it anywhere
in a cell. Lagrange bases are frequently misrepresented as an inefficient interpolation basis, but with
moderate care they can be as speedy as a Newton’s basis.8 The critical step is to write the Lagrange
polynomial in barycentric form. First, note that because N is formed as a tensor product of one
dimensional distributions N̂ , we satisfy (4) with7

p
N
xi

(x) = p
N
(xi1 ,xi2 ,xi3 )(x1, x2, x3) = p

N̂
xi1

(x1)pN̂
xi2

(x2)pN̂
xi3

(x3). (7)

Now define � : R → R as the polynomial such that �(xi) = 0 for xi ∈ N̂ . For a univariate Lagrange
polynomial the barycentric form is8

p
N̂
xi

(x) =
�(x)

��(xi)(x− xi)
, (8)

and substituting this into Eq. 7 yields

p
N
xi

(x) =
�(x1)

��(xi1)(x− xi1)
�(x2)

��(xi2)(x− xi2)
�(x3)

��(xi3)(x− xi3)
. (9)
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Here �(x) is defined in Eq. (3), and ��(xi{1,2,3}) can be pre-computed and stored in table. Thus,
reconstructing with a Lagrange polynomial basis requires O(|N |2) setup, but only O(|N |) work
per query, which is exactly what the Newton’s basis achieves. The final form for the Lagrange
polynomial using Gauss-Lobatto-Legendre points with n = N1/3 is7

p
N
xi

(x) =

�
1, x = xi,

(x1−1)(x1+1)P �
n(x)

n(n+1)Pn(xi1 )(x−xi1 )
(x2−1)(x2+1)P �

n(x)
n(n+1)Pn(xi2 )(x−xi2 )

(x3−1)(x3+1)P �
n(x)

n(n+1)Pn(xi3 )(x−xi3 ) , otherwise. (10)

The Error in a Cell

As previously stated, we choose to subdivide octree cells until the relative error in it is less than
10−6 or a maximum level of subdivisions has been achieved. We now describe how the error is
computed. In univariate approximation it is popular to use the remainder formula (Eq. (1)) to derive
an error bound. To generalize this to Ciarlet’s formula let D̂if be the maximum D

|N |
xi−xf for all x

in the region of the integral; then,

f(x)− LNf(x) =
�

xi∈N

p
N
xi

(x)
�

[xi,x,...,x]
D

|N |
xi−xf (11)

≤
�

xi∈N

p
N
xi

(x)
�

[xi,x,...,x]
D̂if. (12)

Examining this formula we come to two conclusions: (i) Whatever bound we get will not be tight as
D̂if represents a maximum in both space and direction; this is worse than the univariate counterpart,
which only concerns itself with a maximum over space. (ii) Finding a bound with this method
will be a challenging and computationally slow task. In light of this we eschewed a technically
elegant solution for one that is simpler and less error prone. To find the error in a cell we took
random samples of the approximate force Fa and exact force Fe, and computed the relative error as
�Fa − Fe�/�Fe�. The maximum such error was taken as the error bound of a cell.

RESULTS AND DISCUSSION

Distance From an Asteroid

Our first experiment was designed to test the hypothesis that gravity in cells closer to the asteroid
would be more difficult to approximate than in cells farther away. We setup an interpolation cell
with 400 m sides and order 6 polynomials at progressively closer locations. To keep our test simple
we used a cuboid with the approximate dimensions of Castalia as our asteroid. The cells used were
in two types of locations. One set was at varying distances from a flat face of the asteroid and
another set was at varying distances from an edge of the asteroid. Figures 3 and 4 show some test
cases, and Table 1 summarizes the results.

In both cases we can see that bringing the cell closer to the asteroid increases the error of ap-
proximation. For the edge on case we see a dramatic difference, though this is probably due to the
presence of the edge, which is a high curvature feature.
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Table 1 EFFECT OF DISTANCE ON ERROR
Distance Face approach max error Edge approach max error

far 2.29× 10−8 3.89× 10−9

medium 2.95× 10−7 7.76× 10−8

adjacent 9.77× 10−7 5.37× 10−3

High Curvature Features

To further investigate the effects of high curvature features we setup another test. In this exper-
iment we used the same Castalia-like cube, but added a tetrahedron to one face to act like a small
bump on the surface. We started with a bump of 200 m edge lengths and scaled down from there.
For each configuration we used a cell with 25 m sides and order 6 interpolation, placed such that
the center of the closest face was aligned with the tip of the tetrahedron. Figure 5 shows some test
cases, and Table 2 summarizes the results.

Table 2 EFFECT OF SMALL FEATURES ON ERROR
Feature size (m) Max error

200 6.84× 10−4

175 6.62× 10−4

150 6.41× 10−4

125 6.19× 10−4

100 6.00× 10−4

75 5.79× 10−4

50 5.62× 10−4

25 5.37× 10−4

0 3.98× 10−13

As we want errors beneath 10−5, it seems that even a slight bump can give polynomial interpo-
lation significant problems. Given that the 1998 ML14 model has edge lengths as small as to 9 m,
this is especially troubling. The solution, as we shall see, is to use smaller cells that wrap around
the feature instead of one large cell.

Varying the Size of a Cell

Given the poor performance of polynomial interpolation for cubes at the 25 m scale, we wanted to
know how small our cubes would need to be in order to achieve the desired error. In this experiment
we studied the effect of varying the size of a cell on the accuracy of our interpolation. To test
this we placed a cube cell with order 6 interpolation centered near a tip of a 1998 ML14 model.
Starting with an edge length of 250 m, we halved each dimension of the cube for every subsequent
experiment. Figure 6 shows some test cases, and Table 3 summarizes the results.

We can use these results to motivate the case for octrees. First, assume the domain of interest is a
cube surrounding 1998 ML14 with edge length 2500 m; this is a fair assumption because anywhere
outside that range can use low order spherical harmonics as a fast approximation. From these results
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Table 3 EFFECT OF CELL SIZE ON ERROR
Size (m) Max error

250 5.75× 10−2

125 2.85× 10−2

62.5 1.46× 10−2

31.3 7.24× 10−3

15.6 3.63× 10−3

7.81 1.86× 10−3

3.91 9.03× 10−4

1.95 4.63× 10−4

0.977 2.28× 10−4

0.488 1.14× 10−4

0.244 5.66× 10−5

0.122 2.82× 10−5

we conclude that we will need resolution down to 12 cm to capture the fine detail near the surface.
With a regular grid this would require dividing the domain into (2500/0.12)3 ≈ 9 × 1012 cells. If
each cell contains order 6 interpolation, we need 73 × 3 = 1029 double precision coefficients, or
8232 bytes per cell (the power of 3 in this is for the 3 dimensions of the cell and the factor of 3 is for
the 3 components of force). The total memory cost for such a model is about 74 Petabytes. Even at
order 2, we would need around 6 Petabytes to store a regular grid.

Varying the Polynomial Order

Our next experiment focused on varying the order of approximation; specifically, we explored the
interaction between distance from the asteroid and order of approximation. Two cube cells centered
at (441 m, 231 m, 0 m) (1-radius) and (750 m, 231 m, 0 m) (2-radii) with 250 m edge length and
polynomial interpolants between orders 1 and 7 were tested. Figures 7 and 8 show some test cases,
and Table 4 summarizes our results.

Table 4 EFFECT OF INTERPOLATION ORDER ON ERROR
Order Distant 250 m domain max error Close 250 m domain max error

1 7.94× 10−2 3.48× 10−1

2 5.37× 10−3 1.40× 10−1

3 8.91× 10−4 1.13× 10−1

4 1.20× 10−4 7.59× 10−2

5 2.34× 10−5 7.16× 10−2

6 3.23× 10−6 5.75× 10−2

7 6.03× 10−7 5.37× 10−2

Far away there is a clear benefit to using high order polynomials for approximating the gravita-
tion. Closer in, however, these results show diminishing returns for higher order polynomials. We
conclude that the appropriate strategy for our octree uses few high order cubes far away, and many
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low order cubes closer to the asteroid. This is some what counterintuitive as one may expect high
order approximations to yield the most significant benefits where the field changes most rapidly.

Octree Models

We now present preliminary experiments in generating octrees to approximate gravitational force
near the asteroid 1998 ML14. In this exploratory test we only modeled a domain 1/125 of the
volume of our final intended dimensions; the domain origin is (400 m, -250 m, -250 m) and the
size is (500 m, 500 m, 500 m). The error tolerance was set to 10−6, and the number of subdivision
levels capped at 8 (smallest cells are approximately 4 m). Following the conclusions of the previous
section, interpolation order was controlled as follows: cells within the first two subdivisions were
order 6, cells in the last two subdivisions were order 2, and the rest were order 4.

Figure 9 shows cross sections of the error in the xy-, xz-, and yz- planes. As we can see, errors
are very well behaved at 1.5 and 2 radii from the center of the asteroid. In fact, only when we get
very close to the surface are we in danger of violating our goal of 10−5.

This model costs about 80 MB of storage; thus, we predict the full volume would cost on the
order of 80 MB ×125 ≈ 10 GB, which is close to what modern personal workstations can handle.
This estimate is actually rather high as the domain we have explored is more costly than most. For
example, regions inside the asteroid have zero cost as they are not approximated, and regions farther
away can easily use large high order cells. As such, we would not expect a full domain to actually
cost 10 GB of memory.

Speed Tests

In this experiment we measured the comparative performances of the competing models. 1998
ML14 was used as our asteroid model to enable comparison with previous work. Table 5 summa-
rizes the relative speeds (1.0 being polyhedral method) of polynomial interpolation and other meth-
ods. We can see that the polynomial interpolation scheme compares favorably with other methods.
Compared to Ref. 1 we have similar performance, but better understanding of the errors. Specifi-
cally, while Ref. 1 only reports errors for orbits at 3 radii from the body, our error estimates go all
the way to the body. Furthermore, our errors at 3 radii are closer to 10−5, two orders of magnitude
better than the coarse model results in Ref. 1. See Figures 9 and 7 at order 6.

Table 5 RELATIVE SPEEDS OF AVAILABLE METHODS
Model Speed Factor

polyhedral 1.0
order 6 polynomial 0.0104
degree and order 6 spherical harmonics 0.0145
coarse shape, Taylor series1 0.091
coarse shape, Taylor series, histories1 0.01
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CONCLUSION

We have presented an efficient method for approximating gravitational force of small, irregular
bodies that is accurate enough for planning missions near them. Our technique combines an adaptive
spatial data structure with polynomial interpolation to cover the entire domain with an approxima-
tion. The flexible spatial hierarchy enables us to refine our model in regions that are difficult to
approximate (e.g. near high curvature regions), and enables error guarantees on the model. This
method is shown to produce satisfactory results at 2 and 3 radii from the center of the asteroid, and
given sufficient subdivisions, even 1 radius from the asteroid. We believe this model is competi-
tive with its counterparts for Monte Carlo simulations of spacecraft trajectories passing near small
bodies. A summary and comparison of the computational characteristics for each available method
follows.

Octree with Polynomial Interpolation

Memory: Our method has very large memory requirements. Every octree cell requires (order +
1)3 × 3 coefficients, and there may be millions of cells. Our preliminary results indicate a 10 GB
upper bound for the memory requirements of this technique. Speed: Using interpolating polyno-
mials permits a constant time reconstruction of the force within a cell, and finding the correct octree
cell is a O(log N) operation. In practice this gives a 100× speed up over the polyhedral method.
Errors: Errors can be controlled to within user tolerances. In our experiments we reached our
10−5 goal quite near the asteroid (further than 4 m from the surface), and surpassed it at points 2
and 3 radii away (from the center).

Spherical Harmonics

Memory: Spherical harmonics have a very small memory footprint: only (order + 1)2 co-
efficients to store the whole model. Speed: Depending on the order and degree used spherical
harmonics can be and up to 100× faster than the polyhedral method. At best, spherical harmonics
approaches the speed of our method, and compares favorably with other methods. Error: No mat-
ter what order is chosen errors near non-convex regions of the asteroid render this method useless
for missions close to a small body.13 This puts spherical harmonics at a significant disadvantage to
both the polyhedral method and the method presented in this paper.

Mascons3

Memory: Mascons use memory linear to the number of point masses used. In practice this
number is in the thousands; thus, mascon memory footprint is very small. Speed: Mascons are
faster than polyhedral methods, however, they are still subject to a linear run-time complexity. In
practice their performance is irrelevant as they have non-trivial error. Error: Errors for this method
have not been theoretically bounded, and experiments show that large errors do exist.3

Polyhedral Method3

Memory: The primary memory cost of this method is storing the polyhedral model and its
associated data. As most models have only tens of thousands of elements polyhedral methods
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require a small amount of memory. By this metric the polyhedral method performs better than our
method. Speed: Calculation requires iterating over every edge and face; furthermore, each edge
and face calculation includes a transcendental function. Hence, polyhedral methods are slow to
compute gravitational force; our technique is two orders of magnitude faster. Error: As long as
the polyhedral model and density assumptions are not far from the truth this method produces exact
results. Of course, any errors in this method would spoil other models using it as a base line; e.g.,
the one considered in this paper.

Modified Polyhedral Method1

Memory: In addition to the memory costs of the polyhedral method, modified polyhedral meth-
ods cache many prior calculations; this, however, can only take a constant factor beyond the nom-
inal. Hence, modified polyhedral methods also have modest memory requirements. Speed: De-
pending on the orbit this varies between 10× and 100× faster. In ideal circumstances this reaches
our performance, but in general 100× speed ups are not achieved. Error: Errors at 3-radii are
close to or below 10−3; closer trajectories may experience more or less error. Our method has an
advantage here because we can adaptively drive error down as needed, and thereby guarantee certain
error bounds.

FUTURE WORK

There are still many experiments that need to be run. Foremost among them is the need for more
complete octree representations of gravity around an asteroid. At present only exploratory models
have been created, but we are hoping that recent access to parallel computers will enable us to
create complete models. Upon completing these larger models we shall use our method in complete
trajectory simulations, and compare these results to other methods as a final verification.

Other avenues of research from here are: (i) performing Monte Carlo simulations with this model,
(ii) trying different approximation schemes within nodes, and (iii) updating these kinds of models
with data captured during missions. The last point warrants additional explanation. One of the
primary draw backs of the polyhedral model is that incorporating measured error in force estimates
requires updating the physical description of the small body. This fitting step is challenging to
say the least. On the other hand, interpolatory techniques should be more apt at making correc-
tions because they are based on measurements to begin with. Aside from the speed of polynomial
approximations, this is potentially their greatest strength.
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Figure 3 Error as a function of distance from a flat face of a body. The shaded plots
show the logarithm of relative error of gravitational force along the face of the cell
closest to the body. Upper left: Context for the test. The body is shown in red and the
cells in blue. Upper right: A cell 1000 m away. Lower left: A cell 500 m away. Lower
right: A cell adjacent to the body. Each cell used order 6 interpolation, and the true
values were taken to be the ones computed by the polyhedral method.
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Figure 4 Error as a function of distance from an edge of a body. The shaded plots
show the logarithm of relative error of gravitational force along the face of the cell
closest to the body. Upper left: Context for the test. The body is shown in red and the
cells in blue. Upper right: A cell 1414 m away. Lower left: A cell 707 m away. Lower
right: A cell adjacent to the body. Each cell used order 6 interpolation, and the true
values were taken to be the ones computed by the polyhedral method.
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Figure 5 Effect of small features on error. The shaded plots show the logarithm of
relative error of gravitational force along the face of the cell touching the tetrahedron
feature. The goal is to avoid errors larger than 10−5, so saturated white regions indi-
cate a poor approximation. Upper left: An image of our test body. In this image the
tetrahedron had 200 m edge lengths. Upper right: A 175 m tetrahedron. Lower left:
A 100 m tetrahedron. Lower right: A 25 m tetrahedron. Each cell used order 6 inter-
polation, and the true values were taken to be the ones computed by the polyhedral
method.
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Figure 6 Error as a function of cell size. The shaded plots show a cross section of the
logarithm of relative error of gravitational force. The goal is to avoid errors larger
than 10−5, so saturated white regions indicate a poor approximation. Upper left:
Context for the test. The red outline shows the boundary of asteroid 1998 ML14; the
blue boxes indicate the cells we tried. Upper right: A cell with 250 m edge lengths. The
saturated white regions show large errors are present. Lower left: A cell with 62.5 m
edge lengths. The saturated white regions show large errors are present. Lower right:
A cell with 3.91 m edge lengths. The errors here are within tolerance. Each cell used
order 6 interpolation, and the true values were taken to be the ones computed by the
polyhedral method.
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Figure 7 Error as a function of order of interpolation in a distant cell. The shaded
plots show a cross section of the logarithm of relative error of gravitational force.
Upper left: Context for the test. The red outline shows the boundary of 1998 ML14,
the blue box indicates our cell. Upper right: Interpolation at order 2. Lower left:
Interpolation at order 4. Lower right: Interpolation at order 6. The true values were
taken to be the ones computed by the polyhedral method.
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Figure 8 Error as a function of order of interpolation in a cell close to the asteroid.
The shaded plots show a cross section of the logarithm of relative error of gravitational
force. Upper left: Context for the test. The red outline shows the boundary of 1998
ML14, the blue box indicates our domain. Upper right: Interpolation at order 2.
Lower left: Interpolation at order 4. Lower right: Interpolation at order 6. As we can
see all errors reported are outside the acceptable range. The true values were taken
to be the ones computed by the polyhedral method.
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Figure 9 Error of a test octree model representing 1/125 our final domain. The shaded
plots show the logarithm of relative error in gravitational force. Upper left: Context
for the test. The green region shows where the asteroid is inside the cell. Upper right:
Error along the xy-plane at z=0 m. Lower left: Error along the xz-plane at y=0 m.
Lower right: Error along the yz-plane at x=500 m. The error in most of the cells in
all these is less than 10−5 as desired. The only exceptions are in the cells very close to
the asteroid in the top right and bottom left figure. These are cells of size about 4 m.
Cells used a variable order interpolation depending on their size, orders ranged from
2 to 6. The true values were taken to be the ones computed by the polyhedral method.
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