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Abstract

Approximation based methods, such as the cubetree algorithm, have proved to be signifi-
cantly faster than traditional methods for complex force evaluations near small irregular bodies.
Such methods also hold the promise of simplifying the inclusion of experimental data to up-
date the force model. However, the cubetree algorithm does not preserve intrinsic properties of
gravitational force such as continuity, divergence freedom or exactness. These properties may
be needed for trajectory optimization, for the use of geometric (e.g. symplectic) integrators for
long term propagation and for other trajectory design problems. This paper presents several
adaptive schemes preserving global continuity, exactness or divergence-freedom and discusses
the difficulties involved in preserving all of these properties globally.

I. Introduction

With the continuing increase in computing power, large scale problems, which were considered very
difficult in the past decade, have now become tractable. In particular optimization methods based on
genetic algorithms have recently attracted many researchers in astrodynamics [1, 2] and simulations
involving hundred of thousands of trajectory propagations have recently appeared [3, 4]. However,
there is still a need to improve the core algorithms, such as ODE integration and force function
evaluation, for several reasons.

First, faster elementary methods mean that larger, more realistic systems can be considered.
In particular, large simulations generally assume fairly simple dynamics, and are more challenging
for complex force models such as small body environments. Secondly, as autonomous navigation
becomes a reality, there is an increased demand for fast on-board computational tools [5]. Finally,
current research in numerical integration emphasizes the importance of preserving fundamental
geometric structures present in the modeled dynamics. Such issues have appeared to be of prime
importance for long-term integration, such as encountered in astronomy, and in the analysis of
numerical experiments.

Recently we introduced a novel numerical scheme (the cubetree algorithm) for the fast evalua-
tion of gravitational force around irregular bodies and showed that it provides a significant speed
improvement over other methods [6]. The scheme exploits the availability of large storage capacities
to reduce the “on-line” computations. Specifically, by locally interpolating the force field around a
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small body this algorithm decreased computational effort of spacecraft trajectories integration by
a factor of a hundred. While such results are of particular interest for large simulations, such as
Monte Carlo analysis, the method may also be useful for smaller, on-board computation due to its
relatively light load on the processor. However, the method has not been optimized and requires a
significant memory footprint. Also, several desirable mathematical properties of gravitational force
have not been considered and are not preserved by the cubetree algorithm.

A. Questions addressed

In this paper we address some of these issues and develop improved approximation schemes for
potential energy and force representation around small irregular bodies. In particular, the following
questions are considered:

1. Smoothness: When several interpolation domains are considered, discontinuities at the bound-
ary represent a fundamental obstacle for theoretical investigation due to the continuous nature
of the force represented. These discontinuities may also lead to a deterioration of integration
performance.

2. Exactness: All conservative forces are the gradient of some potential field. The cubetree
method presented in Reference [6] does not respect this qualitative feature. This is especially
important for long term simulation where qualitative features of the trajectories are of primary
interest.

3. Divergence Freedom: The force of gravitation is divergence free. This property has many
theoretical implications, but is not necessarily preserved by standard interpolation schemes.

4. Efficiency : What interpolation schemes allow for smaller memory footprint while ensuring
sufficient accuracy? This question may be addressed in both the approximation method, and
the choice of subdivision technique used for partitioning the space around the body.

Note that addressing the first two issues is a necessary step for the application of geometric
integrators such as symplectic integrators. Although geometric integrators have been applied to
problems with discontinuities and dissipation, the structure of discontinuities or dissipation is part
of the theoretical framework in those cases [7]. In an approximation scheme like the cubetree method
it is due to the approximation of the force field.

In order to tackle the above issues several modifications of the cubetree algorithm have been con-
sidered. In the first section a regularization of cubetree that produces a continuous approximation is
presented. While easily implementable, this solution requires tighter tolerances on the approximated
function which increases the memory footprint of the model. The third section presents a different
approach based on least squares approximation using hierarchical B-spline refinements which pro-
vided a less stringent error requirement while addressing both continuity and exactness. Finally,
we discuss in the fourth section, divergence free approximations and the challenges in obtaining all
three properties at the same time globally.

II. Cubetree Algorithm

In order to provide a basis for comparison and to better understand the challenges in addressing
the above issues, a review of the cubetree algorithm [6] is presented in Section II.A below. Then
we discuss obvious generalizations and inherent difficulties associated with this class of algorithms.
Further details on the description, implementation and performance of cubetree can be found in
Reference [6].
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A. The Cubetree Algorithm

The cubetree algorithm provides an efficient method for approximating the gravitational force gen-
erated by a small body in its immediate neighborhood1, which allows for a fast evaluation of the
gravitational forces in such regions. The method consists of two parts: (1) a local approximation
scheme for building a force model in a small cuboid domain and (2) a spatial data structure to
distribute these local approximations adaptively.

Local force (or potential) approximation is achieved by polynomial interpolation at the tensor
product of Gauss-Legendre-Lobatto (GLL) points [8]; see Figure 1. This forms a model for a single
cuboid region near a small body. A spatial data structure, called an octree, creates a complete
approximation for the entire domain by adaptively allocating local approximations. An octree – or
quadtree in 2 dimensions – subdivides space by halving its cells in a tree structure that cumulatively
represents the domain of approximation. Once the domain is divided and each cell has been locally
approximated, force at a point x can be quickly calculated by following the tree structure to the
appropriate local approximation. Figure 1 shows how a quadtree subdivides a region and how a
query is resolved by the tree.

Cubetree approximation is extremely fast compared to the polyhedral method [9, 10]. Each
query requires an O(logN) tree lookup and a constant time polynomial reconstruction. In practice
speed-ups between 300× and 100× over the polyhedral method can be expected. To produce the
approximation, however, requires significant up front effort: First, an initial model or data set must
be available to approximate. Then, significant computational effort is required to construct the
model. The model in [6] requires 1150 CPU hours to initialize, and used 64 processors coordinated
with the Message Passing Interface (MPI) [11].
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Figure 1: Gauss-Lobatto-Legendre nodes. Left: 1-dimensional Gauss-Lobatto-Legendre nodes, and their
2-dimensional tensor product. Right: A quadtree viewed as a tree and geometrically. Labels show the
mapping between geometric and tree views. The point represents a query; the tree view shows the query
being resolved. Cells 3 to 9 are leaf cells.

B. Localization and Boundary Mismatches

The initial development of the cubetree algorithm did not explore the choice of the approximation
scheme within each cell; however, the cubetree strategy can be employed with different local approx-
imation methods. Any local approximation scheme may be used as long as the following properties
are satisfied:

1. The local approximation domains (cells) can cover the entire region of interest (i.e. the neigh-
borhood of a small body).

2. The cells can be subdivided in a way that is suitable for the octree data structure while
resulting in a covering of the original cell and subdivided cells of smaller size.

1That is, the space that is not represented efficiently by spherical harmonics, namely the region between the surface
and the sphere of convergence the (exterior) spherical harmonics.
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3. For a fixed cell, the approximation scheme can be adjusted (increased order) to meet a set
tolerance.

4. For a fixed approximation order, the error in a local approximation decreases within subdivided
cell.

Note that in the case of gravity the third requirement is satisfied by any polynomial interpolation
scheme: Gravity is analytic and thus well represented by their Taylor series locally.

The freedom to choose an approximation scheme within each cell enables preservation of any
particular property locally – i.e. within a cell. In particular the interpolation scheme considered
already preserves continuity within a particular cell; furthermore, exactness can be obtained locally
by interpolating potential and computing the force as its negated gradient, rather than directly
interpolating the force. This can be achieved using a Hermite interpolation scheme2. Finally,
divergence freedom can be added by using harmonic polynomials [12] or inner spherical harmonics.
For such a scheme, cells domains can be taken as the circumscribing sphere around each cube cell
of the cubetree algorithm and the potential represented within each cell.

Thus, a model that locally preserves all the desired structure of gravity is possible; these local
properties are, however, not easily extended globally within the framework of the cubetree algorithm.
Indeed, requirement (2) above implies that the local approximations will overlap or meet at the
boundaries of their respective cells. The approximation functions between two neighboring domains
will not necessarily agree on this overlap region. In the original cubetree algorithm, the overlap
regions are the faces of the interpolation cube domains. The approximation function are interpolating
polynomials which agree at shared interpolation nodes, but may not agree elsewhere on the faces.
In particular, when 2 cubes are of different sizes, not all the interpolation nodes are common across
a face and the discontinuity of the approximation is more accentuated. This discontinuity is clearly
apparent in Figure 9 (a) which shows the approximation error in adjacent cells.

In particular, these discontinuities do not allow for derivatives to be computed in the overlap
regions and thus do not allow for the computation of force as the derivative of a potential globally.
Note however, that the jumps in discontinuity are within the overall error tolerance, that is, the
variations in the approximations are bounded and small. As a result, if the interface region is of
measure zero, as in the cubetree algorithm, the approximation function is locally integrable.

In summary, being based on an error tolerance requirement only, the cubetree algorithms does not
preserve smoothness (continuity of the approximation and its derivatives), exactness or harmonicity
of the force it approximates globally, but can represent such properties locally, almost everywhere.

III. Boundary Regularization

In this section we present a first method to overcome the lack of continuity or smoothness at the
boundary of the cubetree algorithm. While this method can be coupled with a Hermite interpolation
scheme to provide a continuous and exact method, it requires more demanding error tolerances and
results in larger memory footprint. The method, however, may be adequate for some applications
and is relatively simple to implement. Moreover, it clarifies the difficulties and necessary conditions
for generating an exact scheme.

A. Boundary Matching

As mentioned previously, the cubetree algorithm is built such that the approximated force is within
a given tolerance ε of the “true” value. In particular in an overlapping region, two approximations,
P1(x) and P2(x) that approximate the given force or potential, f , within the set accuracy, coexist
and each approximation is as good as the other. Linear combinations of these two approximations

2For the cubic cells of the original cubetree algorithm, a Hermite interpolation polynomial can be obtained as a
tensor product of 1-dimensional Hermite polynomials, in the same way as the Lagrange interpolating polynomials
used in [6] have been obtained from 1-dimensional Lagrange polynomials.
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that satisfies the error requirement would also be equally fitted for the given objectives. Notably,
combinations of the from Pλ(x) = λ(x)P1(x) + (1−λ(x))P2(x), with λ(x) ∈ [0, 1] and varying from
0 to 1 can be shown to satisfy these requirements. Indeed, |P1− f | ≤ ε and |P2− f | ≤ ε implies that
|P2 − P1| ≤ 2ε, and |λ ≤ 1|, so that:

|Pλ(x)− f(x)| ≤ |λ (P1 − P2) + P2 − f | ≤ λ |P2 − P1|+ |P2 − f | ≤ 3ε .

Since Pλ(x) equals P1(x) for λ = 1 and P2(x) for λ = 0, this approximation can be used to effectively
provide a transition between P1 and P2, while keeping the error under control.

More precisely, denoting Ω1 and Ω2 two neighboring cubes in the cubetree approximation (with
respective polynomial approximations P1 and P2, as shown in Figure 2(a)), we are thus led to the
following method to obtain continuity across a boundary:

1. Extend the approximation P1 to small layer of width δ across the face in the region Ω2 and
similarly for P2.

2. Linearly match P1 and P2 by choosing λ(x) to be zero on the layer boundary in Ω1 and one
on the layer boundary in Ω2.

If the common face is chosen to correspond to the yz-plane of a local coordinate axis, as shown
in Figure 2(a), then λ(x) can be chosen, for example, to be the linear function (x/δ + 1)/2 to
ensure continuity. Smoothness can be ensured by taking λ(x) to be smooth, as for example
(1/π) arctan((x/δ)/(1 − (x2/δ2))) + 1/2, and the norm in the above estimates to include some
derivative information, such as a Ck norm.
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Figure 2: a): Approximation extension to a layer around a common face (in red). b): Matching a coordinate
at a time.

Note that the boundary layer width must be chosen carefully so as to retain a desired accuracy.
First, this extension can be done due to the fact that P1 and P2 are in fact defined in all of R3 (being
polynomials), while the control of the accuracy with the layer width, δ comes from continuity of
the polynomials. In particular, while |Pi − f | ≤ ε in Ωi, continuity (and compactness of the cubes)
implies that we can choose a δ such that |Pi − f | ≤ 2ε on Ωi + δ3, for example.

When the cubes meet at a corner, the above regularization can be applied one coordinate at
a time. For example, considering the case of Figure 2(b), on Ωα = Ω1 ∪ Ω2, the above “face”
regularization leads to the approximation Pα(x) = λα(x)P1(x) + (1 − λα(x))P2(x). Similarly, one
obtains an approximation Pβ on Ωβ = Ω3 ∪ Ω4. Then, one can apply the “face” regularization on
the pair (Ωα, Pα) and (Ωβ , Pβ).

Since each “face regularization” requires a small extension and an associated loss of accuracy,
the method requires a slightly better approximation inside the cube to obtain a uniform, continuous
approximation across boundaries that still meet a set error tolerance. With the above estimates,
the approximation would be within 5ε for a face and 17ε across a corner, thus requiring ε (the

3This set is defined as: Ωi + δ = {x ∈ Rn : |x− y| < δ for some y in Ωi}.
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approximation error inside the cubes) to be an order of magnitude smaller than the desired maximum
tolerance. This can be taken into account when building the model but results in a larger memory
footprint of the model. However, once built, the cost of force evaluation is a small constant overhead
that does not penalize the efficiency of the cubetree algorithm. This constant time overhead is
associated with a test to determine if the state lies within a boundary layer and, if so, to evaluate
the linear combination of P1 and P2.

Finally note that if no requirement is imposed on the derivative of the interpolating polynomials
P1 and P2, the derivative may not satisfy good error properties and the interpolation of the potential
with this modified cubetree algorithm would not lead to a good force approximation. On the other
hand, using a Hermite interpolation scheme (or one based on harmonic polynomials, as discussed
in the previous section), the above regularization offers a method to provide a smooth and exact
scheme, albeit at the cost of a larger memory footprint4. The exactness is obtained by approximating
the potential instead of the force directly. The forces are simply obtained by differentiation.

B. Partition of Unity

The above regularization can be thought of as applying a partition of unity with cube domains. In-
deed, the boundary layer matching function, λ(x), can be extended beyond the layer to be uniformly
equal to 1 inside one of the cube and zero outside the cube augmented by the layer, and the sum
of all the λ functions is equal to one at any point of space covered by the cubes. That is we can
represent the uniformly continuous approximation as U '

∑
cubes C λC(x)PC(x).

The partition of unity λC is not unique and other choices are possible and have been applied
to the solution of partial differential equations [13, 14, 15]. In particular, the use of harmonic
polynomials in conjunction with partition of unity showed faster convergence rate than classic finite
element methods for solving Laplace equation [14].

The natural extension of the cubetree algorithm in terms of partition of unity emphasizes two
fundamental properties that guide us in the following section. These are:

1. the local nature of the approximation scheme, and thus the reduction of the approximation to
the right selection of the approximation function space: while the initial cubetree algorithm
is based on interpolation to match given the actual force at selected points (a useful property
for model update based on flight data, for example), the interpolation of a function and its
derivative at selected points is not the most versatile function space to approximate a given
function. Rather, approximation schemes based on integral norms between functions lead to
more uniform approximations, as will be discussed in the next section.

2. the importance of the base domain, as opposed to its boundaries: having a covering associated
with a partition of unity, the patching is done “automatically” with the associated partition
of unity functions.

IV. Exact and Continuous Spline Approximation

While the method discussed in the previous section offers a smooth and exact scheme, it requires
the error tolerance to be fixed to stricter standards than what is required by applications and results
in larger models. In this section, we present a different approximation scheme that results in models
of similar size as the original cubetree while preserving exactness and some degree of smoothness.

To create an exact approximation, we proceeds as previously by approximating the potential
rather than the force. Taking the negated gradient of the approximated potential will provide force
and exactness is automatic: F̂ := −∇Û . To ensure smoothness to allow the approximated potential
to be derived, we construct Û in a function space that includes only functions with the desired

4the size of a cubetree model depends on the number of coefficient stored per cell and the overall number of cells.
In the case of a Hermite interpolation, the degree of the interpolating polynomial is larger than that of a Lagrange
polynomial –for equal errors– and thus results in a larger model.
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continuity. Put more concretely, choose a function space S with spanning set B such that φ ∈ B
observes,

φ(x) ∈ C1 ,

φ(x) and ∇φ(x) have compact support.

An example of such a spanning set B with elements satisfying these properties is one generated by
Basis Refinement of a B-spline basis.

A. Basis Refinement

Basis Refinement, or CHARMS [16], is an adaptive refinement framework developed for physical
simulation. In the CHARMS framework adaptive refinement is performed on functions forming B –
known as scaling functions – rather than the elements that describe the domain. Once the scaling
functions are refined the domain elements are adapted to fit the needs of the scaling functions (i.e.
for the purpose of integration). Figure 3 gives an example of refining degree 3 B-splines in 1D.

Figure 3: Refinement relation for a degree 3 B-spline. × below the axis indicate locations of knots. In this
refinement every pair of knots in the original is split by a new knot half way between them. The result is a
new set of B-splines that are translates and dilates of the original.

The refinement relation for scaling functions φ ∈ B is the fundamental unit of adaptivity in
CHARMS. A refinement relation gives a recipe for representing φ with a linear combination of
dilated and translated versions of φ, known as φ’s children C(φ); see Figure 3. At the nth iteration
of refinement the spanning set Bn is constructed by replacing elements φ ∈ Bn−1 with C(φ). Since
linear combinations of C(φ) can represent φ, linear combinations of Bn can represent Bn−1. Thus,
the approximation space of the nth iteration Sn always contains the previous space: Sn ⊇ Sn−1.
Note that this algorithm does not always produce a basis. For some applications – including this one
– the linear independence property of a basis is not necessary. In this case Bn are merely spanning
sets of the space Sn.

The advantage of CHARMS is that one does not need to develop machinery for handling discon-
tinuities at T-junctions. T-junctions arise naturally in adaptive meshing. They get their name from
their appearance in 2 dimensional quadrilateral meshes where it is a point in the interior of an edge
where 3 quadrilaterals meet. T-junctions are seamlessly handled by the virtues of the spanning set:
if its span does not contain discontinuous functions then no discontinuities can arise. Furthermore,
as long as the refinement observes the continuity conditions no subsequent spanning set will per-
mit discontinuities. Thus, CHARMS is the foundation upon which we build a continuous adaptive
approximation.

Before going into more detail we must introduce our scaling function φ, the B-spline Basis
function.

B. 1D B-spline Basis

Let τ := {tj} be a nondecreasing sequence in R with N elements, t0 to tN−1, called the knot vector.
The jth B-spline of order k for the knot vector τ is designated Bj,k,τ , and defined as,

Bj,0,τ (x) :=
{

1 if tj ≤ t < tj+1

0 otherwise, (1)
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Bj,k,τ (x) :=
t− tj

tj+k − tj
Bj,k−1,τ (t) +

tj+k+1 − t
tj+k+1 − tj+1

Bj+1,k−1,τ (t) . (2)

For B-splines to operate in the CHARMS framework they must observe a refinement relation.
Not all B-splines observe a refinement relation, however, one common case does: τ with uniform
knot spacing and knot multiplicity 1. To refine Bτ add a knot between every pair of knots in τ ;
more precisely, insert (tj+i + tj+i+1)/2 after tj+i in τ for i ∈ 0, 1, . . . , k; see Figure 3.

C. B-spline Basis in K-Dimensions

The K-dimensional tensor product B-spline Bτ is defined by the product of K 1-dimensional B-
splines – each with an individual knot vector – where each spline handles one dimension:

Bj,k,τ (x) =
K∏
d=1

Bjd,k,τd
(xd) . (3)

In equation (3) τ is simply a list of knot vectors, one for each dimension, and τd is the knot vector
for dimension d. Similarly, j is a multi-index where jd specifies using the jthd B-spline of τd for
dimension d. For example, in 3 dimensions equation (3) is

Bj,k,τ (x) = Bj1,k,τ1(x1)Bj2,k,τ2(x2)Bj3,k,τ3(x3) .

Refinement in multiple dimensions treats each dimension independently; and in our case we refine
each dimension by halving the distance between knots in the knot vector, as described at the end of
B. We denote subsequent spaces of refined K-dimensional B-splines with the Sn and Bn notation.

Now we can define the scaling functions φ which constitute a spanning set Bn for an adaptive ap-
proximation of gravitation. Let φ be a 3-dimensional B-spline of degree k = 3 with uniformly spaced
knots of multiplicity 1. Modeling potential with

∑
i αiφi means force is modeled by

∑
i αi∇φi .

Thus, the modeled force F̂ , having lost one degree of continuity from differentiation, is C1 and
exact.

D. Linear Independence of Bn
Refinement by substitution with high order B-splines does not guarantee linear independence of the
spanning set Bn [16, 17]. Even in 1 dimension simple refinements can lead to linear dependence in
Bn. Figure 4 gives several 1-dimensional examples.

As Figure 4 indicates, the tricky cases are between different levels of refinement. Linear in-
dependence between levels can be guaranteed with additional bookkeeping [17], but for function
approximation the extra effort is not necessary. In fact, all we need for function approximation is
linear independence within each level of Bn. Within a level the only difficulty is to capture the
repeated children between nearby B-splines. As Figure 4, (a) (compare the second and third row)
shows, the adjacent B-splines contribute to the children of one another. The simplest way to avoid
over adding a given child is to record the included scaling functions of each level of Bn with a bitmap
or set [16]. The problem with the bitmap approach is that it is not adaptive: every function, included
or otherwise, is explicitly represented. A set is adaptive, but in practice a set data structure is too
inefficient to store individual scaling functions. 5 We will revisit this problem in Section IV.G.

The following sections describe an approximation method that does not require linear indepen-
dence between the levels of Bn.

5For example, the C++ Standard Template Library set has 24 bytes of overhead per function (3 pointers). In our
models that would cost about 860 MB of overhead. Given the functions themselves cost about 860 MB (3-dimensional
location) we would waste over 1.5 GB.
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a b

Figure 4: Examples where refinement does not produce a basis. In each diagram the top row shows B0;
red B-splines are to be refined and black B-splines are not. a) The second and third rows are the left and
right refinements respectively, and the final row shows the combination of these refinements. Green shading
indicates the support of the middle scaling function in B0, notice the shaded region is completely covered by
a basis capable of representing the unrefined B-spline. b) This example shows that restricting the domain
of the approximation can make otherwise linearly independent examples, linearly dependent. The green
shaded region is the domain of the approximation. The refinement of the red functions would not normally
completely represent the black function because the children of the red functions do not cover the support of
the black function – which is depicted as the union of red and green shaded regions. In this case, however,
the restriction to the green region means that they do.

E. Least Squares Approximation

Let U : [s, t] ⊂ R3 → R and pick a basis B = {φj}. A least squares approximation chooses
coefficients to minimize the distance between U and its approximation in B given some norm. In
many applications – particularly scattered data interpolation [18] – a discrete norm is made by the
collected data to be fit [19]. In our application data points can be placed where ever convenient.
This gives us the flexibility to pick any norm we want, e.g. L2 or H1. Before going further let us
formalize the minimization problem.

Keep U and B as described above and pick an inner product space in which we wish to minimize
‖U −

∑
j αjφj‖, or equivalently ∥∥U −∑

j

αjφj
∥∥2
, (4)

where ‖ · ‖ is the norm induced by the the inner product 〈 · , · 〉. By differentiating the quantity
in (4) above and setting the result to zero we produce a linear system, Mx = b, that solves the
minimization, where

Mi,j = 〈φi, φj〉 , (5)
bi = 〈U, φi〉 . (6)

In this linear system M is often called a mass matrix. The next natural question is with what norm
shall we minimize ‖U −

∑
j αjφj‖. For our application we wish to approximate both U and F ; thus,

the most obvious choice is the H1 norm,

〈f, g〉 =
∫

Ω

f(x)g(x) +
∑
i

∂

∂xi
f(x)

∂

∂xi
g(x)dx , (7)

‖f‖ =
√
〈f, f〉 , (8)

as it incorporates both gravitational potential and force.
Implementing either inner product requires numerical integration. Our approximation uses cu-

bic polynomials; thus 〈φi, φj〉, i.e. creating the mass matrix, will necessitate integrating degree 6
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polynomials. A degree 6 polynomial is exactly integrated with Gauss-Legendre quadrature of order
4 [20], making it a natural choice for creating the mass matrix. The right hand side, 〈U, φi〉, will
also use order 4 Gauss-Legendre quadrature. We justify this decision with our goal: to approximate
gravitation with cubic polynomials. Therefore, order 4 Gauss-Legendre quadrature will be accurate
for the right hand side at the same time as the approximation is accurate. Finally, the integration
domain, Ω, is split into a hexahedral mesh that mimics the break points of the piecewise polynomials
defining φi. Whenever φi overlaps with another scaling function from a finer level, φj , the hexa-
hedral mesh follows the break points of φj . This hexahedral mesh defines the quadrature domains
over which we evaluate equations (5) and (6).

F. Solving Bn with Linear Dependence

This process works very well for tensor product B-splines, but will fail once our refinement process
begins as the mass matrix is singular when Bn has linear dependence. To accommodate linear
dependence between levels of Bn we will solve Bn hierarchically: Each Bn is formed of nested tiers
T p for 0 ≤ p ≤ n. They are nested in the following sense: T 0 is the coarsest and contains exactly
the scaling functions necessary to cover the domain Ω. T p contains scaling functions from the pth

level that are refinements of scaling functions unique to T p−1, and anything from T p−1 that is not
refined. In other words,

φ ∈ T p =⇒ φ ∈ T p−1 ∨ (∃φ′ ∈ T p−1 ∧ φ ∈ C(φ′) ∧ φ′ /∈ T p−2) ,

where T −1 := ∅. Although Bn is defined similarly to T p, they are not the same. In Bn there is no
restriction on which scaling functions from Bn−1 are refined; however, T p may only refine φ ∈ T p−1

that have already been refined p−1 times. Figure 5 gives a 1-dimensional example, and demonstrates
the difference between Bn and T p.

B0
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T 0

T 0

T 0

T 2

T 1

T 1
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B1

B2

T 0

T 0

T 0

T 2

T 1

T 1

Figure 5: Examples of T p that constitute Bn. Red B-splines are to be refined at the next tier. Notice
the difference between T 1 and B1 in the third iteration. This demonstrates that Bn may refine any scaling
function from Bn−1, but T p only refines those scaling functions unique to T p−1.

To find coefficients for Bn we iterate through T p, solving one tier at a time. First we solve T 0

using equations (5) and (6). To solve T p assume we know the coefficients of T p−1. Then separate
T p into N and R such that,

φj ∈ N =⇒ φj ∈ T p−1 ,

φj ∈ R =⇒ ∃φ′ ∈ T p−1 ∧ φj ∈ C(φ′) .

In other words, R are scaling functions that come from refining T p−1, andN are the scaling functions
we carry without refinement from one tier to the next. Organize φj ∈ T p such that φj ∈ R when
j < |R| and φj ∈ N otherwise, i.e. the first |R| scaling functions of T p are the new scaling
functions, and the rest are from the previous tier, T p−1. Next, create the mass matrix M of T p as
usual, equations (5); and remove the scaling functions that come from earlier levels by taking their
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coefficients from the solution to the previous tier, T p−1. To do this remove the last |N | rows of
M and b, as these equations have already been solved in the in T p−1. This leaves us with under
determined system M̄ ′x = b̄′. Using the coefficients from T p−1, we remove the last scaling functions
in N by subtracting their contribution from the right hand side; thus, creating b̄. Finally, we solve
M̄xp = b̄. Expressed as equations the process is:

1) M̄ ′i,j = Mi,j for i < |R|, j < |T p| ,

2) b̄i = bi −
∑
j

M̄ ′i,jx
p−1 for i < |T p|, j < |T p| ,

3) M̄i,j = M̄ ′i,j for i < |R|, j < |R| ,
4) xp = M̄−1b̄ ,

where xp−1 is a vector of zeros for the first |R| entries and coefficients gleaned from solving T p−1 for
the last |N | entries. Finally, the coefficients for T p are created by replacing the |R| zeros in xp−1

by xp. This process is continued until every tier T p of Bn is solved, the coefficients of T P−1 become
the coefficients for Bn.

It is worth noting that not only does this process permit linear dependence among the levels of
Bn, it also reduces the size of any given linear system solve: In practice we never need the last |N |
rows of M , so they should never be created. This savings can as much as halve the total size of the
mass matrix being solved, which is not insignificant. For example, the final iteration of our model
required 69 GB, doubling this makes for a very large matrix indeed.

G. Implementation Details

In the subsequent sections we describe implementation details that allow our model to efficiently
represent small body gravitation.

G.1. Representation of Bn
This section focuses on representing Bn in a way suitable to preparing and using our model of small
body gravitation. Two concerns dominate the design: memory efficiency during model creation
and computation efficiency during force reconstruction. The former is the primary bottleneck of
our coefficient fitting stage and dictates the number of iterations of refinement the algorithm will
permit. Ideally as much memory as possible is given to the mass matrix, meaning our representation
of Bn should be as lean as possible. The latter is the whole reason for doing this in the first place!
Fortunately both problems are addressed by the same data structure.

Our implementation uses patches of B-splines with uniform knot spacing. Each patch Pi is
constructed by a tensor product B-spline representing many B-splines, Pi := {Bj,3,τ}, with a single
data structure. In this way we can represent any number of B-splines in a cuboid layout with only
three data points: the lower bound of the support of the patch, the upper bound of the support of
the patch, and the knot spacing for all B-splines of the patch.

Representing Bn this way has two advantages. First, it makes representing Bn very compact.
For example, the model developed in Section IV.I.1 requires 1.5 MB of storage to represent 18
million B-splines. Our second advantage is in evaluating Bn. The most efficient B-spline evaluation
procedures compute neighboring B-splines of a knot vector simultaneously [19]. Using the B-spline
patch model captures redundant computation of neighboring φi whenever they belong to the same
patch.

G.2. Refining Patches

Refining a patch is, semantically, the same as refining each B-spline within the patch individually.
As each patch is represented by a tensor product B-spline, the new patch is constructed by inserting
an additional knot between the knots forming each knot vector of the tensor product. In terms of our
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data structure this amounts to dividing the knot distance by 2. However, just as with individual
scaling functions of Figure 4 (a), some patches will share children. To accommodate redundancy
in the children patches must be resized to avoid each other, we call this process patch splitting.
Consider the 2-dimensional example in Figure 6. From a → b two adjacent patches are refined;
oblivious to one another, they generate redundant children. To extinguish the repeated children one
patch is selected to avoid the other, e.g. b → c. The number of additional patches created by this
process – something we wish to keep low – is reduced by always splitting the patch that contains
fewer scaling functions.6

a b c

Figure 6: The patch splitting process. Shaded regions show the support of each patch, and markers show
the peaks of the scaling functions. At the start, (a), there are two patches – red and green. Each patch
is refined such by replacing the present scaling functions with their children, producing (b). A 3 × 5 block
of scaling functions are redundant, so one patch is split to avoid the redundant region, producing the three
patches in diagrammed in (c).

Therefore, our algorithm for refinement is: i) Loop through patches and refine those that need
refinement. ii) Pair-wise compare patches to avoid overlapping refinements using patch splitting.
The pair-wise comparison may be efficiently implemented with a octree data structure [21], but in
our experience the cost of the straightforward O(N2) pair-wise comparisons is small compared to,
solving a matrix with 20 million unknowns.

G.3. Computing Gravity with Bn
We have already spoken to the favorable efficiency of evaluating the B-splines of Bn with patches,
but we still need a mechanism for finding the patches that affect a given query. For this we will use
a bounding volume hierarchy (BVH) [22].

Bounding volume hierarchies are tree data structures for organizing objects with spatial extent.
In this sense they fill the same roll as octrees, but there is an important difference: While octrees
subdivide space, a BVH subdivides groups of objects. Two recursive operations characterize a BVH:
Build and Find. Build takes as input a list L of objects and creates one node.

BoundingVolume finds the upper and lower bounds of the objects in L. Split divides L into
two sublists L` and Lr, which form the input to the next level of the tree. A poor split will
mean the bounding volumes of the subsequent levels do not shrink rapidly, and result in poor Find
performance. Our Split sorts L by the widest dimension of its bounding volume; then L` and Lr
split the sorted L evenly. Figure 7 diagrams the process of building a BVH.

Find recalls all the objects containing a point query by recursively traversing the BVH. At each
level Find recursively follows all children that contain the query point. When Find reaches a leaf
the object contained is appended to the output. Following the Split described above, the tree will
always be balanced; hence, most queries will only require O(lgN) effort. Note that the running
time will depend on the query and how the bounding volumes are organized within the tree. For
example, a perfectly bad Split can force Find to visit every node in the BVH.

6This heuristic was found to globally produce fewer patches than always splitting the patch that locally creates
fewer patches.
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Tree View

Geometric View

Figure 7: A bounding volume hierarchy. The objects organized are the colored boxes. On the left is a
geometric view. The first level shows the bounding box in black, the second level shows it in black and gray,
and the last level only the underlying objects remain. On the right is a tree view of the bounding boxes.

To evaluate Bn efficiently its constituent patches are organized in a BVH. The bounding volume
of a patch P is the union of the supports of φi (i.e., where it is nonzero) for φi ∈ P. Find retrieves
the relevant patches with the BVH and each patch is evaluated.

H. Model Creation

This section concludes the description of model creation.

H.1. Domain Representation and Creating B0

The domain of our approximation, Ω, plays three roles during model creation: i) It provides the
domain over which we evaluate our inner product (equation (7)); ii) seeds B0 with B-spline patches
necessary to cover Ω; and iii) it defines the regions over which we will measure the error in our
approximation. The simplest solution is to represent the region around an asteroid as a cube, but
this needlessly includes the interior of the asteroid. To avoid as much of the interior as possible we
use an octree, and Subdivide whenever a cuboid region intersects the asteroid. To avoid subdividing
forever a lower bound on the cuboid size is provided.

Once a domain octree Ω has been constructed B0 is created to cover Ω. Each octree cuboid is
considered in isolation and a patch is placed to cover it with a basis of B-splines over Ω. This creates
redundant B-splines near the boundaries of octree cells, which are removed using patch splitting.
See Figures 6 (b) and (c) and Figure 8.

Figure 8: Detailed view of initializing B0. Left: Ω is the interior of the two boxes. Right: Patches are
placed so the domain of patches covers the cuboid it came from. This creates redundancies, which the
overlapping markers (crosses and squares) show. Shaded regions show the domain of each patch.
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H.2. Error Estimation and Creating Bn+1

To estimate relative error we sample the octree domain Ω. Within each cuboid ω ∈ Ω the error is
randomly sampled at a rate of one sample every 10 m3. Any time the relative error of a sample in
ω exceeds some threshold every patch intersecting ω is marked for refinement. Any time no samples
in ω exceed the threshold ω is removed from the list of domains to check at the next iteration. At
the end of the error checking process all patches requiring refinement are refined and patch splitting
keeps them from producing redundant scaling functions.

I. Numerical Experiments with 1998 ML14

Now we turn our attention to approximating the gravitational potential and gravitational force of
1998 ML14.

I.1. Notes on Model Creation

The domain of our approximations began at (-1250, -1250, -1250) m and extended 2500 m in each
direction, where the origin is the center of mass of the asteroid model. (As a point of reference the
radius of 1998 ML14 is ≈ 500 m.) The smallest allowed cube in the octree domain was 2500/27 ≈
19.5 m to an edge. We also limited the largest cube to 2500/24 ≈ 156 m to an edge. The relative
error threshold for refinement was set to 5×10−7, which is well beneath the requirement for mission
design [23]. The Conjugate Gradient solver’s relative convergence tolerance [24] was set to 10−16.
This model was created in 4500 CPU hours on a parallel computer using the Message Passing
Interface (MPI) [11] (64 processors for approximately 80 hours) and occupies 210 MB of memory.
B0 is composed exclusively of patches with knot spacing 2500/27 m, B2 ends the iterations with a
mix of knot spacings at 2500/29 m to 2500/27 m. To cover the region outside the octree spherical
harmonics of degree and order 12 were employed. We name this model the Patches of Uniform
B-splines Tree, or pubtree for short.

I.2. Continuity at T-junctions

Now we test continuity between levels of refinement. In Figure 9 (a) we plot the error in the
cubetree’s force at a T-junction; the discontinuity is readily apparent at 935 m. Compare this to
the same plot for a T-junction in our B-spline model, Figure 9 (b). No discontinuities exist, in fact
the only evidence of a T-junction is a slight shift in the oscillatory pattern at 770 m.
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Figure 9: Continuity comparison of cubetree and B-spline method. In each case the absolute error in the
x-component of the force is measured along a 50 m ray. The dashed line at y = 0 represents the actual
force. As the T-junctions do not occur in the same places for each model, different rays are measured. The
left graph shows cubetree, and the right graph shows B-spline method.

I.3. Error Measurements

This section explores the structure of refinement by plotting the relative error in potential and force.
Portions of the domain are examined in Figure 10, which plot relative error in gravitational potential
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and gravitational force along the z = 0 plane. Note that Û is about three orders of magnitude more
effective than F̂ . Therefore, for applications where an approximation to potential is not needed a
direct approximation to force (as in cubetree) may be easier to create. A white band, extending
approximately 60 m from the surface, is visible near the interface of the asteroid and space. This
band is where the force approximation fails to make 10−6. The same band for 10−5 error it is 40 m
from the surface. Future improvements to patch refinement may shrink the band further, though
we feel comfortable with accuracy up to 40 m from the surface.

Figure 10: Relative error of pubtree across the complete domain. The interior of the asteroid is not
measured and left black. Error is plotted on a log scale. Going from left to right: Error across the entire
domain in potential. Error across the entire domain in force. Error near the surface in potential. Error near
the surface in force.

Compared to cubetree this model appears to be less accurate despite using similar error bounds.
Figure 11 plots cubetree force’s relative error in the same region as Figure 10. This effect comes
from the granularity and convergence rate of the cubetree compared to the pubtree: In the cubetree
model the coarsest refinement is 312.5 m and contains tensor product degree 6 polynomials; pubtree’s
coarsest refinement is only 156 m and contains tensor products of degree 3 piecewise-polynomials.
Therefore, not only does a single refinement of cubetree affect a bigger region, it also has a higher
rate of convergence – especially away from the boundary where gravity is smooth. For example,
Compare the plots of Figure 9, both plots show the absolute error on either side of a refinement.
Pubtree approximately halves the error across the barrier whereas cubetree error falls about one
order of magnitude.

Figure 11: Relative error in the force produced by cubetree. The interior of the asteroid is not measured
and left black. Error is plotted on a log scale. Left: The error over the entire domain; Right: Sample of the
error in a region abutting the asteroid; compare these to Figure 10.

Cubetree’s aggressiveness means a direct comparison between pubtree and cubetree in terms of
memory footprint and speed is not entirely fair. Also, quantitative comparisons between trajectories
of the models will tend to favor cubetree; as we will see in the following section. Of course quantitative
improvements over cubetree was not our goal. Furthermore, both models easily achieve the original
goal of 10−5.
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I.4. Refinement Sequence

Figure 12 shows the model is develop over 3 iterations. After each iteration regions with high error
are reduced. For example, the band of white surrounding the asteroid, which shrinks after each
iteration.

B0 B1 B2

Figure 12: Relative error over the sequence of refinement. The interior of the asteroid is not measured and
left black. Error is plotted on a log scale.

I.5. Trajectory Integrations

Our trajectory simulations use the same models as the ones from [6]. In addition we simulate using
the pubtree model:

Pubtree trajectories are generated using the pubtree force model. Integration is done with Em-
bedded Runge-Kutta Prince-Dormand (order 8,9) method using relative error tolerance 10−13 and
absolute error tolerance 10−6.

We integrated a family of retrograde orbits starting between 600 m and 1000 m from the asteroid
center. Initial positions were chosen close to the equatorial plane, and initial velocities did not contain
large components outside the plane. The magnitude of the velocity was clamped to within 0.65 and
0.75 of escape speed. Simulations ran for 5 days of ballistic motion with each model (pubtree,
cubetree, augmented polyhedral, reference), where impacting trajectories were thrown out. The
position and velocity of the orbiter was recorded every 5 minutes of simulated time.

This experiment was repeated for 993 trajectories. For each trajectory we measured the maximum
difference in position and velocity between the cubetree trajectory and reference trajectory. Figure 13
is a histogram of the errors in position and velocity. For comparison sake the same histograms for
cubetree are presented in Figure 13. Cubetree’s superior relative error is evident in the histograms,
however, the shape of the histograms are similar. On average pubtree trajectories were 270× faster
than the augmented polyhedral, compared to 301× for cubetree.
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Figure 13: Histograms of errors in position and velocity for 993 retrograde pubtree trajectories integrated
for 5 days and observed at 5 minute intervals. Left two are pubtree, right two are cubetree.
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J. Discussion

The CHARMS framework, coupled with our hierarchical coefficient fitting, has produced an adaptive
approximation to gravitational potential and force. The force is exact and continuous, and the
accuracy is within the threshold for the vast majority of the domain.

J.1. Trajectory Integration

During the trajectory integration experiments we found pubtree was approximately 0.9× the speed of
cubetree. However, single evaluation tests actually estimate the speed at 2× cubetree! The discrep-
ancy comes from the integrator’s adaptive time stepping strategy: On average pubtree trajectories
required 1.8× more samples than cubetree. We believe this comes from the higher amplitude of the
oscillations in pubtree’s force model; see Figure 9. Reducing the amplitude by tightening the error
threshold would resolve this, thereby increasing the speed of pubtree.

J.2. Patch Refinement

As we have described it, pubtree employs patch refinement: if the error is bad in one part of the
patch the whole patch is refined. This approach becomes problematic once the regions with high
error are smaller than the patches. In this case every iteration will require a complete patch to be
refined, effectively destroying adaptivity. To wit, our iterations of pubtree ended exactly for this
reason.

The solution to this problem is sub-patch refinement implemented with patch splitting and
hierarchical error estimation. First, error estimation should follow an octree structure: Each time
a cuboid of the error octree is found to contain error it should be subdivided before being checked
again. In this way we localize the error. Then, instead of refining whole patches we split the patch
so only its scaling functions affecting the localized error are refined. Following this algorithm would
reintroduce adaptivity and permit further iterations on pubtree.

J.3. Linear Independence

Although we have pursued a linearly dependent spanning set Bn, with sufficient implementation
effort a linearly independent basis could also be devised. A comparison between the methods would
be a valuable analysis.

V. Divergence free approximations and challenges in
preserving harmonicity

A divergence free approximation of the force can be obtained by projecting an approximate vector
field onto the space of divergence free fields. According to the Helmholtz decomposition a vector
field in a simply-connected domain can be decomposed into a divergence free and a curl free part:

F = Fdiv + Fcurl with ∇ · Fdiv = 0 and ∇× Fcurl = 0 .

The presence of holes and handles in a domain results in a non zero harmonic part in the above de-
composition. This more general result is called the Hodge (or Helmholtz-Hodge) decomposition [25].
Such decompositions are commonly used in computational incompressible fluid mechanics [26]. Sev-
eral methods have been proposed in the literature, such as [27, 28, 29], so we do not consider the
analysis of divergence free approximations alone.

Note however, that most of these schemes apply only to forces (vector fields) and do not allow
a priori for a modification of the potential that would then generate a divergence free field upon
differentiation. In Reference [28] the authors do compute the potential for the divergence free part
but the techniques as presented there work only for piecewise constant vector fields. In effect,
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the continuous and exact approximation schemes described in this paper and the work existing on
divergence free projections present significant challenges in merging.

To better understand this remark, let us comment on some classic results about harmonic func-
tions [12]. First, note that a force deriving from a potential which is also divergence free satisfies
Laplace’s equation. That is, the potential is a harmonic function, and is thus analytic and each
of its derivative is also an analytic function. Thus an approximation scheme aiming at being both
exact and divergence free must provide an analytic approximation.

More importantly, the solution of Laplace equation is unique given continuous data on the
boundary of a bounded region with Lipschitz boundary. For example, within the cubetree framework,
the knowledge of the function on the boundary of the cubes would imply that the approximated
function be completely determined inside the cubes. In particular, this leaves no freedom in matching
the derivatives at the boundary. Unless the boundary data of each cube can be prescribed globally,
two adjacent cubes sharing a face will only be continuous and not C1 across the common face.

To illustrate these difficulties in the case of the boundary matching method, let us consider the
setting of Section III, while assuming that the approximation polynomials Pi are harmonic. The
blending of the functions P1 and P2 involves products of functions of the form: λ(x)Pi(x). The
Laplacian of these products is given as:

∆(λP ) = λ∆P + P∆λ+ 2(∇λ · ∇P ) .

Even if one chooses λ to be harmonic, so that the first two terms in the above right hand side vanish,
the remaining term imposes a constraint on the derivative, which we have seen is not free to choose.
A straight forward way to set all the terms to zero consists of taking λ to be a linear function. In
that case however, the smoothness is lost and only a continuous approximation is obtained. Note
that while the partition of unity method has been used with harmonic polynomials in Reference [14],
the concern was about convergence – that is the measure of the error performed when compared
to a true solution – rather than the harmonic properties of the approximation. In particular, these
methods, as well as finite elements methods, only consider the problem in its variational formulation,
thus loosing some of the smoothness of the problem.

The above properties illustrate the basic fact that being harmonic in a small region has some
global implications. In effect, approximating the potential by harmonic functions would consist in
solving exactly Laplace equation, which indicates the close link between preserving harmonicity and
solving exactly Laplace equation for non-convex sets. These remarks in particular indicate the close
link between function representation and the numerical solution of partial differential equations.
The regularization of the cubetree algorithm, for example, was initially devised independently of the
partition of unity method before realizing its equivalence to the construction of a partition of unity
used in solving partial differential equations, while the spline approximation has been motivated by
higher order finite elements methods.

VI. Conclusions

We have described the continuous and exact approximations of gravitational forces in the neighbor-
hood of small bodies. These approximations preserve some degree of smoothness and were obtained
in the setting of adaptive piecewise polynomial approximation initially considered in the cubetree
method. While adaptive schemes are necessary for force approximation near small bodies, it has
been shown that the complexity of imposing an extra structure on such schemes may, in fact, not be
worthwhile for spacecraft applications due to the short integration time span generally encountered.
In particular, the distinction between small discontinuities compared to small oscillations in the
error become subversive as the error tolerance is tightened.

The ability to represent exactness is however important from a theoretical viewpoint as it il-
lustrates the close link between the force representation problem and the solution of the partial
differential equation defining the potential. In particular, it has been shown how the linear de-
pendence among the “basis” functions appearing when refinement patches are considered can be
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overcome with the introduction of hierarchical refinement; a contribution that may also be useful to
higher order finite element methods.

Moreover, these methods open the way for setting a standard for small body close field repre-
sentation similar to ephemeris models for planetary positions that offer flexibility in updating the
models and provide fast force evaluation routines.
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