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Abstract

We extract the surface structure of the unstable invariant manifold tube projected
into position space, of a halo orbit nelg in the circular restricted three body model.
We do this by using transversal planes to intersect trajectories that approximate the
tube. From these intersection points we construct spline-interpolated cross section
curves which give a good idea of the structure of the tube. For example, we show
that, for the value of. we use, the tube pinches, develops a self-intersection, develops
loop-inside-tube structure, pinches some more, and so on. We also construct surfaces
made of quadrilaterals and triangles from these cross-sections. The transversal planes
are obtained by taking planes orthogonal to a curve that follows the general shape of
the tube. One such curve we use, is the unstable invariant manifold of the equilibrium
point L itself. In another example, we take a circle that follows the tube, as the
curve for finding planes transversal to the tube. We also show that tubes of different
energies, that start out in certain ordering, do not obey the ordering after a while. Our
method is complementary to the method of taking cross-sections of constant time (the
isochronous method), as used by some other researchers. The isochronous method is
good at revealing the temporal structure of trajectories on a tube. However, due to
the unequal speeds of different trajectories, it is harder to use for long length surface
extraction. In contrast, using our method, we show cross-sections of the tube through
an angular extent of nearly during which the tube becomes extremely convoluted.
Our work is motivated by applications to space mission design.

INTRODUCTION

In the spatial circular restricted three body problem (spatial CR3BP), halo orbitd.pear
have stable and unstable invariant two dimensional manifolds, forming two dimensional
tubes in six dimensional phase (position-velocity) space. See the thésissg[f2004 for
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background information about CR3BP, invariant manifolds in phase space of CR3BP, and
the use of these invariant manifolds for space mission design. These tubes can be projected
into three dimensional configuration (position) space to form two dimensional surfaces
embedded ifR®. What is the structure of such surfaces ? There appears to be no complete
answer to this question in the literature. A common way to understand the structure of these
surfaces is to linearize the equations of motion about a periodic orbit, then use eigenvectors
of the linearization to create trajectories along the stable or unstable directions. See for
instanceRosg2004; Gomez et al[2004. However, when the trajectories are viewed, even
with an interactive 3D viewer, the ambiguities in the shape of the tube that they represent,
are not easy to resolve. Figuteshows one branch of the unstable manifold of a halo orbit.
We now know from the use of our method that the cross-sections of this tube pinch, the tube
develops a self-intersection and then develops further complicated structure downstream
from the halo orbit. This is not apparent in Figurewhich is the usual way of visualizing

such tubes that is popular in the literature. Note that 100 trajectories have been drawn
to approximate the tube but the structure mentioned above is still not apparent in Eigure
With our technique this structure is immediately visible. See Figuaad3 for an example

of the use of our method. Figurés, 7 explain our method in more detail and Figures3

show the tube surface made of quadrilaterals and triangles, and created from the cross-
sections obtained by our method.

Notation: In this paper we use the convention of placing the smaller primary-at:, 0)
and the larger one &ty 0).

Motivating Applications

In design of low thrust trajectories for space missions, stability of the trajectory during
loss of thrust is an issue. If stable manifolds are used to approach the bodies, as long
as they do not impact a body, they will lead to capture during loss of thrust. In order to
obtain initial conditions that put the spacecraft on such trajectories, one needs to know the
phase space structure. In addition, the knowledge of phase space structure can be useful for
designing approximate capture or escape trajectories quickly, which can then be optimized
and refined using optimizers which use the full ephemerides and detailed force models to
model spacecraft motion.

Previous Work

The earliest work we are aware of is the unpublished repourman and Worfol{1996

in which the surface is extracted for short lengths of the tubes. The only published work
we know of in this subject islowell et al.[2004. However, in the comparable part of their

work they use constant time sections to obtain a surface. We will call this the isochronous
method in what follows. Our method is complementary to the isochronous metitmhof

ell et al.[2004 in the sense that we use spatial sectioning while they use isochronous sec-
tioning. Both methods have their strengths and weaknesses. For example, the isochronous
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black curves in the current figure are spline interpolations of intersections points obtained by intersecting transversal planes with the trajectorie:

approximating the tube. Without these the structure of the tube is not easily visible, as can been verified by viewirg Flgutkick blue line
corresponds to the mass of Sun as the primary mass and mass of Earth plus mass of Moon as the secondary mass. For more details on our met|

curve. Other curves could also have been used just as easily, for example, part of a circle. Analogous result obtained by using a circular arc ar
see Figure$,6,7.

Figure 2: lllustration of our method of visualizing tubes. Using our method of computing cross-sections, one can see the pinching, the figure-
shown in Figured and10. See also discussion in Sectiofor this figure, Jacobi constafit~ 3.00052 and ~ 3.04 x 10~%. This value ofu

8 self-intersection, and the loop-inside-tube structure. Figusbows the cross-section curves individually making the structure even more
apparent. A tube surface assembled from the cross-sections and made from quadrilateral patches is showrdin Higuoeoss section
since it follows the general direction of the tube. In this case the planes, used for obtaining the cross-sections, were placed orthogonally to thi:

in the middle is part of the unstable manifold of the equilibrium pdigt It was used as an automated way of obtaining the transversal planes
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method exposes the temporal structure of the trajectories on a tube. On the other hand
long length surface extraction is harder with that method, precisely because of this strength
in the temporal domain. See Figuté to see the distortion that the isochronous method
introduces. See also more discussion in Section

Our Results

We use transversal planes to intersect the trajectories approximating the tube. The intersec-
tion points are then interpolated using cubic splines or lines. This gives a very good idea of
the shape of the tube. For example, with this tool we have discovered that the tube becomes
pinched, then self-intersects so that the cross-sections develop a figure-8 shape. Then as
one moves downstream, the tube becomes pinched on the opposite side and then becomes
a double loop which develops more pinching and so on. The tube becomes more and more
convoluted (rolled up) as one moves downstream. All this can be seen in Fijarasd

9. Surfaces assembled from the cross-sections obtained by our method are shown in Fig-
ures4 and13. Furthermore, we have discovered that the invariant unstable manifalg of
(which we will call L,1/*) does not stay inside the tubes of certain energies (there was no
reason to assume that it would anyway), while it follows the general shape of the unstable
manifold going away from the secondary body. We have also discovered that tubes of 3
different energies, that start out one inside the next, do not maintain this ordering in certain
places. This is clear in Figurégl and15. These are examples of the types of structures

and relationships between structures that one can discover using our method. In the results
of our experiments, it is not clear, how much the properties of the integrator used for prop-
agating trajectories affects the results. The use of interval arithmetic, analytical techniques,
and perhaps variational integrators might help to clarify whether the details of the results
are numerical artifacts. This is something we have not done.

SURFACE STRUCTURE OF TUBE

Isochronous cross-sectioning

One method for obtaining the surface structure that has been considertmivayl et al.

[2004 is to take isochronous cross-sections. This means, one considers points on all the
trajectories that take the same amount of time to be reached from the halo orbit, along
their respective trajectory. This set of points gives an isochronous cross-section (not nec-
essarily planar) which can then be used to build a surface of the tube. One strength of
this isochronous method is that it is able to reveal the temporal structure of the solutions.
However this also becomes a handicap in long length surface extraction because the range
of speeds of the trajectories is so large that some trajectories are left far behind others.
Thus the isochronous cross-sections can become very stretched along the tube. This is
more readily understood by viewing Figuté. For short lengths of the tube, one can use
these cross sections and join points of same trajectories on adjacent cross-sections to make
guadrilateral patches. The surface made with quadrilateral patches, and extracted using this



technique is shown in Figurg2. Since the trajectories on the tube wind around a lot, In
addition to the stretching along the length of the tube, caused by the non-uniform motion of
trajectories, there is another distortion visible in Figurésind12. This is that the patches
forming the surface become distorted in a direction around the short dimension of the tube.
Thus, the use of isochronous cross-sections to extract surfaces suffers from distortions of
the patches, both along and around the tube. Our technique described in this paper ad-
dresses the distortion along the length of the tube, and lays the groundwork for removing
the distortion around the short dimension of the tube.

Sectioning with transversal planes

Instead of using isochronous cross-sections we use planes transversal to the tube to obtain
the cross-sections. Our method is summarized in Figoy&s/ and8 and some results

are in Figure2, 3 and9. While the planes could have been placed manually, in our work

we use some guiding curve, called ttare curve in this paper, along the tube to place the
transversal planes. We place the planes such that the inter-plane distance along the curve is
roughly equal. See, Figufe The intersection of planes with the trajectories approximating

the tube are then computed and the intersection points interpolated, as shown irbFigure
Figure7 shows the top view of a single trajectory intersecting planes that have been placed
along, and transversal to a core curve. We only retain the first intersection with a plane.
The part of the trajectory that precedes this intersection is discarded when considering the
next plane. See Figuréfor illustration of this point. This choice is made by our algorithm
because when we interpolate the intersection points (of trajectories with a given plane) into
a cross-section curve, we do so in the order in which the trajectories were when they started.
Thus each trajectory can appear as only one intersection point in a plane, in order for the
sequence to make sense.

Intersection of planes amongst themselves can sometimes be a problem. The problem
may exist if the trajectories on tube intersect beyond the intersection of the planes. This
can result in gaps in tube surface during reconstruction, because of the way our algorithm
works. In the tube going outwards from, use of a circle as a core curve can solve the
problem of transversal planes intersecting amongst themselves, if it exists. The intersection
then will be at the center of the circle, which is far away from the trajectories. We have
shown this set up in Figur&0. More sophisticated plane placement can be done, which
allows planes to become non-orthogonal to core curve, allows them to adjust along core
curve, or allows core curve to straighten out, in order to push the intersections away from
the danger zones. We have not implemented these more sophisticated algorithms for plane
placement since the use of a circle in this case, is an easier solution.

Surface structure

The intersection points of trajectories approximating the tube with a given plane can be
interpolated in any suitable manner. We have shown cubic spline interpolation in Bigure
and 2. Front views of these planar cross-section curves are shown in Figugand



9. These cross-sections give a very good idea of the surface structure of the tube. We
also use a piecewise affine interpolation of the points of intersections of trajectories with
planes to obtain surfaces made of quadrilaterals or triangles. The quadrilateral are obtained
by taking two adjacent piecewise-affine cross-section curves and joining pairs of points
corresponding to the same trajectory. The triangles are then obtained by triangulating each
guadrilateral. Surfaces obtained by this method are shown in Figame 13.

This method of surface construction can be applied to sections of the tube longer than
that achievable with isochronous cross-sections of Figlieend12. However applying
it to something like an angular extent ofof the tube shown in Figuré0 would be of
guestionable value. One can see in the front views of the cross-section curves ingrigure
that the tube becomes very rolled up inside itself as one travels downstream along the length
of the tube. A surface made from patches in such portions of the tube would not be very
easy to interpret visually. The cross-section curves however, continue to be a useful tool to
study the surface structure even when the tube becomes so convoluted.

There are several approaches possible for improving the quality of the cross-sections
and surfaces with fewer trajectories, by doing adaptive sampling. This is discussed more in
Section.

SUMMARY OF RESULTS

Using the algorithms described in this paper we have studied the surface structure of the
projection into configuration (position) space, of an invariant manifold. The manifold is a
surface inR3 and it is one branch (going away from the secondary) of the unstable manifold
of a halo orbit around the equilibrium point in the spatial CR3BP. We used~ 3.04 x

10~% which corresponds to the mass of Sun as the primary and the mass of Earth and Moon
as the secondary body. Most of our figures are for a Jacobi corGtant3.00052. Our

results are as follows:

(i) The tube-like surface pinches, self-intersects and then develops complicated rolled up
structure further downstream. This is shown in Figeyré and9.

(i) Tubes at 3 different energy levels that start out one inside the other near the halo orbit,
do not maintain that ordering further downstream. This is shown in Figyire

(i) The invariant manifold of., while following the general shape of the tube, does not
stay inside it. This is apparent in Figuse

(iv) Cross-sections we find by our method can be used to construct tube surfaces made
of quadrilaterals or triangles as shown in Figufeand 13. These do not exhibit
the distortions along the length of the tube, that are apparent in surfaces made from
isochronous cross-sections shown in Figuréand12.

(v) The cross-section method allows us to understand the surface structure a long distance
away from the halo orbit, as shown in Figureé8 and9 even after the surface has
become very convoluted and rolled up.

9



(vi) The cross-sections obtained by our method provide the capability to remove the dis-
tortion in surface patches caused by the trajectories winding around the tube. This is
discussed more in Section the paragraph on adaptive sampling.

SHORTCOMINGS AND FUTURE DIRECTIONS

Dependency on parameters and numerical methods: We have not studied the depen-
dency of core curve or the trajectories, on the exact position from which they are started
out (the initial positions are offset a little bit from where the linearization is performed).
Dependency on the tolerances and properties of the numerical integrator have also not been
investigated. Variational integrators, such as symplectic integrators, are known to preserve
the qualitative properties of the phase portrait even with large time steps. Thus it might be
worthwhile to try variational integrators to see if they provide for greater accuracy with less
computational effort. For an introduction to variational integratorshdaesden and West
[2001.

Structure very close to the halo orbit:  Close to the halo orbit, the trajectories move
much faster around the tube than along the tube. Thus planes transversal to the core curve
are nearly parallel to the trajectories. This makes for a very poor sampling in the region
very close to the orbit. In this paper we have started a little distance from the halo orbit.
Some other technique would have to be used to obtain the surface structure very close to
the halo orbit. Perhaps the use of planes radial to the tube might be more appropriate there.
Another possibility for this region is to use some method that constructs a surface from a
cloud of points mentioned later in this section.

Structure in more complicated parts of phase space: The unstable manifold of is

very well behaved in the portion of phase space we have studied. If however one travels
in the opposite direction, towards the secondary body/ th&" quickly becomes tangled
around the secondary body before escaping into a nice trajectory. Thus it would not be of
much use a as a core curve in the tangled region, except perhaps for short portions of the
tube.

Resampling of cross-section curves: Since the trajectories wind around the tube, the
patches making up the tube surface get somewhat distorted. To avoid this we suggest the
following technique which we have not implemented yet. The cubic spline cross-section
curves can be resampled at equal arc length intervals, starting from the top most point and it
is these points that can be joined in adjacent cross-sections to obtain quadrilateral patches.
All the cross-section curves are in planes that are perpendicular toytipdane. This
resampling suggested above should get rid of the twisting caused by the around-the-tube
twisting of the trajectories which is apparent in Figare

10



Reconstruction from cloud of points: A completely different method for surface con-
struction might be to consider all the points on the trajectories as a cloud of points and
apply algorithms from computer graphics literature for constructing meshes from clouds
of points. In fact we know more than just the cloud of points, since we know the velocity,
energy and we know which points lie on the same trajectory. This extra information may
be useful in inventing an algorithm for surface reconstruction. In any case, such algorithms
will probably not work in the regions far downstream where the surface gets very convo-
luted as shown in Figur@. But it should be possible to use the method in the early parts

of the tube. It is also possible to investigate other surface reconstructions, based on plane-
trajectory intersections, where all the intersections are collected as data. Then one may
apply algorithms for obtaining curves from clouds of points lying in a plane. Clustering
algorithms for example might be good candidates here.

Adaptive sampling:  In some cross-sections, the intersections of the trajectories with
that plane are not uniformly separated, some points being much further apart than others.
Consider two such points that are far apart but come from trajectories that are logically
adjacent to each other. To fill in between them, one needs to start out trajectories between
them. One can go back to the halo orbit and since all the velocities and positions are known
on it, one can compute the initial conditions for trajectories to start between the two in
guestion. The intersections of these don’t even have to be recorded for the earlier planes
where the point distribution of intersection points is uniform. This provides an adaptive
strategy for obtaining high quality cross-section curves with fewer trajectories.
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Figure 7: Top view of intersection of planes with a single trajectory. Planes appear as straight lines
in this top view. The trajectory is the thinner curve and the thicker curve is the core curve used
for obtaining transversal planes. See caption of Figuier more details. A red circle marks the
intersection of trajectory with a plane. Blue circles are locations of plane origins along core, thick
blue curve. Trajectory intersects the first plane 3 times, but as shown, we only use the first intersec-
tion and ignore the subsequent intersections with same plane. This is required by our algorithm for
obtaining cross-sections. We join the intersections of all trajectories with a plane, in sequence, to
get the cross-section. Thus each trajectory has to appear as only one intersection point in a plane, in
order for the sequence to make sense.
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Figure 8: Close-up, front view of some of the cross-section curves of Figuiiehe curves are the

curve numbers 1, 5 and 7 of Figusecounting from near the halo orbit (the small end of the tube).
The numbers mark the intersection points of the trajectory labeled by that number and the plane in
which the cross-section curve lies. Figlrshows many such cross-section curves in front views,
using 100 trajectories to approximate the tube (instead of the 20 used here).
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Figure 10: Using other curves to obtain transversal planes. This setup was used to generate the
cross-sections shown in Figuge The thick blue curve is a circle centered @t0, 0) and it is used

to generate the planes which appear as radial lines in this top view. Obviously, a circle of any radius
would do the job. For illustration we show the circle of radius equal to the distanEe fobm the

origin. The primary body in this is Sun and the secondary body is a body with mass equal to the total
mass of Earth and Moon. The sun is-gt and the earth-moon is &t— ;.. We have shown only 10

of the 100 trajectories (shown in cyan) for illustration. Using a circle in this case has the advantage
that the planes do not intersect except at the center of the circle, which is far beyond where the
trajectories lie. Thus we are able to catch all the intersection points which would be missing (due to
the algorithm used) if the planes intersected amongst themselves and the trajectories lay beyond the
intersection points. This point is discussed rri%re in Section
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